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INTRODUCTION
Accumulating evidence implicates perturbed RNA homeostasis in ALS. A 
pathological hallmark of this disease is the nuclear depletion and cytoplasmic 
aggregation of the RNA-binding protein TDP-43, involved in nearly all aspects of RNA 
processing [1]. Furthermore, a subset of ALS patients carries mutations in TARDBP 
(coding for TDP-43). Yet, how disease-associated mutations in TARDBP affect RNA 
processing remains poorly understood. Determining the transcriptome alterations 
that arise in presence of mutations may inform the development of transcriptome-
correcting therapies able to normalize several disease pathways simultaneously. 
This drug discovery paradigm known as “transcriptome reversal” was previously 
applied to neurological diseases including epilepsy [2], schizophrenia [3], and 
frontotemporal dementia [4], and yet remains largely unexplored in the ALS field.

OBJECTIVES
We aimed to identify transcriptomic alterations induced by TARDBP mutations and 
investigate potential transcriptome-correcting therapeutic strategies in human motor 
neurons (MNs) derived from induced pluripotent stem cells (iPSCs).

METHODS
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Figure 1. Mutant MNs are dysfunctional in absence of TDP-43 pathology. (A) Differentiation of MNs from 
iPSCs. (B-D) Representative immunostaining (B) and quantification (C,D) of TDP-43 subcellular 
localization in MNs differentiated for 6 weeks. Scale bar, 50 µm. n=5.  (E) Phase-contrast images of MNs 
differentiated on 24-well multielectrode (MEA) plates. Scale bar, 250 μm. (F) Longitudinal changes in 
mean firing rate of MNs. n=11. All data shown as mean ± SEM. *p<0.05, **p<0.01. 
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Figure 2. Identification of a shared gene expression signature in TDP-43A382T and TDP-43G348C MNs by 
RNA-seq. (A-D) Volcano plots (A-C) and Venn diagram (D) comparing differentially expressed genes 
(DEGs) in TDP-43 MNs relative to isogenic control (false discovery rate of 5%). (E) Scatter plot showing a 
strong correlation between fold changes of overlapping DEGs. n=5.
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Figure 3. Transcriptome-based in silico and phenotypic screens identify one compounds that 
ameliorates MN survival and activity. (A) Screening funnel used to identify candidate compounds. (B) 
Scatter plot of the τ scores from the individual (y-axis) versus combined (x-axis) datasets gene 
signatures. Each data point represent one compound of the CMap library. Arrow heads show selected 
compounds. (C) Description and τ scores of selected compounds.  (D) Heatmap of MN survival relative 
to DMSO control after treatment with compounds (0.1 μM and 1.0 μM) in culture conditions without 
neurotrophic factors (NFs) supplementation. (E) Overview of phenotypic screens. (F) MN viability after 
treatment with MLN4924. (G) Mean firing rate of MNs treated with candidates compounds (1.0 μM). n=4. 
All data shown as mean  ± SEM. *p<0.05, **p<0.01., ***p<0.001, ****p<0.0001. 

CONCLUSION
We performed whole-transcriptome profiling of MNs differentiated from two knock-
in iPSC lines expressing TDP-43A382T or  TDP-43G348C. Using mutation-induced gene 
expression signatures and the CMap database [6], we identified several compounds 
predicted to normalize gene expression toward wild-type levels. Among top-scoring 
compounds selected for further investigation, the NEDD8-activating enzyme 
inhibitor MLN4924 effectively improved viability and neuronal activity, highlighting a 
possible role for the NEDDylation pathway in the pathobiology of TDP-43-ALS. 
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